Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2315568121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530900

RESUMO

Methanogenic archaea inhabiting anaerobic environments play a crucial role in the global biogeochemical material cycle. The most universal electrogenic reaction of their methane-producing energy metabolism is catalyzed by N    5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH), which couples the vectorial Na+ transport with a methyl transfer between the one-carbon carriers tetrahydromethanopterin and coenzyme M via a vitamin B12 derivative (cobamide) as prosthetic group. We present the 2.08 Šcryo-EM structure of Mtr(ABCDEFG)3 composed of the central Mtr(ABFG)3 stalk symmetrically flanked by three membrane-spanning MtrCDE globes. Tetraether glycolipids visible in the map fill gaps inside the multisubunit complex. Putative coenzyme M and Na+ were identified inside or in a side-pocket of a cytoplasmic cavity formed within MtrCDE. Its bottom marks the gate of the transmembrane pore occluded in the cryo-EM map. By integrating Alphafold2 information, functionally competent MtrA-MtrH and MtrA-MtrCDE subcomplexes could be modeled and thus the methyl-tetrahydromethanopterin demethylation and coenzyme M methylation half-reactions structurally described. Methyl-transfer-driven Na+ transport is proposed to be based on a strong and weak complex between MtrCDE and MtrA carrying vitamin B12, the latter being placed at the entrance of the cytoplasmic MtrCDE cavity. Hypothetically, strongly attached methyl-cob(III)amide (His-on) carrying MtrA induces an inward-facing conformation, Na+ flux into the membrane protein center and finally coenzyme M methylation while the generated loosely attached (or detached) MtrA carrying cob(I)amide (His-off) induces an outward-facing conformation and an extracellular Na+ outflux. Methyl-cob(III)amide (His-on) is regenerated in the distant active site of the methyl-tetrahydromethanopterin binding MtrH implicating a large-scale shuttling movement of the vitamin B12-carrying domain.


Assuntos
Mesna , Metiltransferases , Mesna/metabolismo , Metiltransferases/metabolismo , Metilação , Vitamina B 12/metabolismo , Metano/metabolismo , Amidas , Vitaminas
2.
Proteins ; 91(9): 1329-1340, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37119125

RESUMO

FAD-independent methylene-tetrahydrofolate (methylene-H4 F) reductase (Mfr), recently identified in mycobacteria, catalyzes the reduction of methylene-H4 F to methyl-H4 F with NADH as hydride donor by a ternary complex mechanism. This biochemical reaction corresponds to that of the ubiquitous FAD-dependent methylene-H4 F reductase (MTHFR), although the latter uses a ping-pong mechanism with the prosthetic group as intermediate hydride carrier. Comparative genomics and genetic analyses indicated that Mfr is indispensable for the growth of Mycobacterium tuberculosis, which lacks the MTHFR encoding gene. Therefore, Mfr appears to be an excellent target for the design of antimycobacterial drugs. Here, we report the heterologous production, enzymological characterization, and the crystal structure of Mfr from the thermophilic mycobacterium Mycobacterium hassiacum (hMfr), which shows 78% sequence identity to Mfr from M. tuberculosis. Although hMfr and MTHFR have minor sequence identity and different catalytic mechanisms, their structures are highly similar, thus suggesting a divergent evolution of Mfr and MTHFR from a common ancestor. Most of the important active site residues of MTHFR are conserved and equivalently positioned in the tertiary structure of hMfr. The Glu9Gln variant of hMfr exhibits a drastic reduction of the catalytic activity, which supports the predicted function of the glutamate residue as proton donor in both hMfr and MTHFR. Thus, highly similar binding modes for the C1 -carriers and the reducing agents in hMfr and MTHFR are assumed.


Assuntos
Mycobacteriaceae , Mycobacterium tuberculosis , Catálise , Genômica , Mycobacterium tuberculosis/genética
3.
Nat Commun ; 13(1): 6315, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274063

RESUMO

Various microbial metabolisms use H+/Na+-translocating ferredoxin:NAD+ reductase (Rnf) either to exergonically oxidize reduced ferredoxin by NAD+ for generating a transmembrane electrochemical potential or reversely to exploit the latter for producing reduced ferredoxin. For cryo-EM structural analysis, we elaborated a quick four-step purification protocol for the Rnf complex from Clostridium tetanomorphum and integrated the homogeneous and active enzyme into a nanodisc. The obtained 4.27 Å density map largely allows chain tracing and redox cofactor identification complemented by biochemical data from entire Rnf and single subunits RnfB, RnfC and RnfG. On this basis, we postulated an electron transfer route between ferredoxin and NAD via eight [4Fe-4S] clusters, one Fe ion and four flavins crossing the cell membrane twice related to the pathway of NADH:ubiquinone reductase. Redox-coupled Na+ translocation is provided by orchestrating Na+ uptake/release, electrostatic effects of the assumed membrane-integrated FMN semiquinone anion and accompanied polypeptide rearrangements mediated by different redox steps.


Assuntos
Clostridium tetanomorphum , Ferredoxinas , Ferredoxinas/metabolismo , Oxirredutases/metabolismo , NAD/metabolismo , Mononucleotídeo de Flavina/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Oxirredução , Sódio/metabolismo , Flavinas/metabolismo
4.
J Inorg Biochem ; 234: 111904, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779405

RESUMO

Some N2-fixing bacteria store Mo to maintain the formation of the vital FeMo-cofactor dependent nitrogenase under Mo depleting conditions. The Mo storage protein (MoSto), developed for this purpose, has the unique capability to compactly deposit molybdate as polyoxometalate (POM) clusters in a (αß)3 hexameric cage; the same occurs with the physicochemically related tungstate. To explore the structural diversity of W-based POM clusters, MoSto loaded under different conditions with tungstate and two site-specifically modified MoSto variants were structurally characterized by X-ray crystallography or single-particle cryo-EM. The MoSto cage contains five major locations for POM clusters occupied among others by heptanuclear, Keggin ion and even Dawson-like species also found in bulk solvent under defined conditions. We found both lacunary derivatives of these archetypical POM clusters with missing WOx units at positions exposed to bulk solvent and expanded derivatives with additional WOx units next to protecting polypeptide segments or other POM clusters. The cryo-EM map, unexpectedly, reveals a POM cluster in the cage center anchored to the wall by a WOx linker. Interestingly, distinct POM cluster structures can originate from identical, highly occupied core fragments of three to seven WOx units that partly correspond to those found in MoSto loaded with molybdate. These core fragments are firmly bound to the complementary protein template in contrast to the more variable, less occupied residual parts of the visible POM clusters. Due to their higher stability, W-based POM clusters are, on average, larger and more diverse than their Mo-based counterparts.


Assuntos
Molibdênio , Tungstênio , Ânions , Molibdênio/química , Oxigênio , Polieletrólitos , Solventes , Tungstênio/química
5.
Elife ; 112022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35748623

RESUMO

Lactate oxidation with NAD+ as electron acceptor is a highly endergonic reaction. Some anaerobic bacteria overcome the energetic hurdle by flavin-based electron bifurcation/confurcation (FBEB/FBEC) using a lactate dehydrogenase (Ldh) in concert with the electron-transferring proteins EtfA and EtfB. The electron cryo-microscopically characterized (Ldh-EtfAB)2 complex of Acetobacterium woodii at 2.43 Å resolution consists of a mobile EtfAB shuttle domain located between the rigid central Ldh and the peripheral EtfAB base units. The FADs of Ldh and the EtfAB shuttle domain contact each other thereby forming the D (dehydrogenation-connected) state. The intermediary Glu37 and Glu139 may harmonize the redox potentials between the FADs and the pyruvate/lactate pair crucial for FBEC. By integrating Alphafold2 calculations a plausible novel B (bifurcation-connected) state was obtained allowing electron transfer between the EtfAB base and shuttle FADs. Kinetic analysis of enzyme variants suggests a correlation between NAD+ binding site and D-to-B-state transition implicating a 75° rotation of the EtfAB shuttle domain. The FBEC inactivity when truncating the ferredoxin domain of EtfA substantiates its role as redox relay. Lactate oxidation in Ldh is assisted by the catalytic base His423 and a metal center. On this basis, a comprehensive catalytic mechanism of the FBEC process was proposed.


Assuntos
Elétrons , L-Lactato Desidrogenase , Transporte de Elétrons , Cinética , L-Lactato Desidrogenase/metabolismo , Lactatos , NAD/metabolismo , Oxirredução
6.
EMBO J ; 41(18): e109990, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35698912

RESUMO

Bacteria utilize small extracellular molecules to communicate in order to collectively coordinate their behaviors in response to the population density. Autoinducer-2 (AI-2), a universal molecule for both intra- and inter-species communication, is involved in the regulation of biofilm formation, virulence, motility, chemotaxis, and antibiotic resistance. While many studies have been devoted to understanding the biosynthesis and sensing of AI-2, very little information is available on its export. The protein TqsA from Escherichia coli, which belongs to the AI-2 exporter superfamily, has been shown to export AI-2. Here, we report the cryogenic electron microscopic structures of two AI-2 exporters (TqsA and YdiK) from E. coli at 3.35 Å and 2.80 Å resolutions, respectively. Our structures suggest that the AI-2 exporter exists as a homo-pentameric complex. In silico molecular docking and native mass spectrometry experiments were employed to demonstrate the interaction between AI-2 and TqsA, and the results highlight the functional importance of two helical hairpins in substrate binding. We propose that each monomer works as an independent functional unit utilizing an elevator-type transport mechanism.


Assuntos
Escherichia coli , Homosserina , Proteínas de Bactérias/química , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Homosserina/análogos & derivados , Homosserina/análise , Homosserina/metabolismo , Lactonas , Simulação de Acoplamento Molecular , Percepção de Quorum
7.
FEBS J ; 289(18): 5599-5616, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35313080

RESUMO

Anaerobic toluene degradation involves ß-oxidation of the first intermediate (R)-2-benzylsuccinate to succinyl-CoA and benzoyl-CoA. Here, we characterize the last enzyme of this pathway, (S)-2-benzoylsuccinyl-CoA thiolase (BbsAB). Although benzoylsuccinyl-CoA is not available for enzyme assays, the recombinantly produced enzymes from two different species showed the reverse activity, benzoylsuccinyl-CoA formation from benzoyl-CoA and succinyl-CoA. Activity depended on the presence of both subunits, the thiolase family member BbsB and the Zn-finger protein BbsA, which is affiliated to the DUF35 family of unknown function. We determined the structure of BbsAB from Geobacter metallireducens with and without bound CoA at 1.7 and 2.0 Å resolution, respectively. CoA binding into the well-known thiolase cavity triggers an induced-fit movement of the highly disordered covering loop, resulting in its rigidification by forming multiple interactions to the outstretched CoA moiety. This event is coupled with an 8 Å movement of an adjacent hairpin loop of BbsB and the C-terminal domain of BbsA. Thereby, CoA is placed into a catalytically productive conformation, and a putative second CoA binding site involving BbsA and the partner BbsB' subunit is simultaneously formed that also reaches the active center. Therefore, while maintaining the standard thioester-dependent Claisen-type mechanism, BbsAB represents a new type of thiolase.


Assuntos
Tolueno , Zinco , Anaerobiose , Conformação Molecular , Tolueno/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34753818

RESUMO

Multidrug and toxic compound extrusion (MATE) transporters are widespread in all domains of life. Bacterial MATE transporters confer multidrug resistance by utilizing an electrochemical gradient of H+ or Na+ to export xenobiotics across the membrane. Despite the availability of X-ray structures of several MATE transporters, a detailed understanding of the transport mechanism has remained elusive. Here we report the crystal structure of a MATE transporter from Aquifex aeolicus at 2.0-Å resolution. In light of its phylogenetic placement outside of the diversity of hitherto-described MATE transporters and the lack of conserved acidic residues, this protein may represent a subfamily of prokaryotic MATE transporters, which was proven by phylogenetic analysis. Furthermore, the crystal structure and substrate docking results indicate that the substrate binding site is located in the N bundle. The importance of residues surrounding this binding site was demonstrated by structure-based site-directed mutagenesis. We suggest that Aq_128 is functionally similar but structurally diverse from DinF subfamily transporters. Our results provide structural insights into the MATE transporter, which further advances our global understanding of this important transporter family.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Aquifex/genética , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Mutagênese Sítio-Dirigida , Filogenia , Células Procarióticas/fisiologia
9.
Chem Commun (Camb) ; 57(96): 12948-12951, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34806715

RESUMO

Despite the plethora of information on (S)-selective amine transaminases, the (R)-selective ones are still not well-studied; only a few structures are known to date, and their substrate scope is limited, apart from a few stellar works in the field. Herein, the structure of Luminiphilus syltensis (R)-selective amine transaminase is elucidated to facilitate engineering towards variants active on bulkier substrates. The V37A variant exhibited increased activity towards 1-phenylpropylamine and to activity against 1-butylamine. In contrast, the S248 and T249 positions, located on the ß-turn in the P-pocket, seem crucial for maintaining the activity of the enzyme.


Assuntos
Aminas/metabolismo , Gammaproteobacteria/enzimologia , Engenharia de Proteínas , Transaminases/metabolismo , Aminas/química , Modelos Moleculares , Especificidade por Substrato , Transaminases/química
10.
Chembiochem ; 22(22): 3173-3177, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34555236

RESUMO

The biologically important, FAD-containing acyl-coenzyme A (CoA) dehydrogenases (ACAD) usually catalyze the anti-1,2-elimination of a proton and a hydride of aliphatic CoA thioesters. Here, we report on the structure and function of an ACAD from anaerobic bacteria catalyzing the unprecedented 1,4-elimination at C3 and C6 of cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA) to cyclohex-1,5-diene-1-carboxyl-CoA (Ch1,5CoA) and at C3 and C4 of the latter to benzoyl-CoA. Based on high-resolution Ch1CoA dehydrogenase crystal structures, the unorthodox reactivity is explained by the presence of a catalytic aspartate base (D91) at C3, and by eliminating the catalytic glutamate base at C1. Moreover, C6 of Ch1CoA and C4 of Ch1,5CoA are positioned towards FAD-N5 to favor the biologically relevant C3,C6- over the C3,C4-dehydrogenation activity. The C1,C2-dehydrogenation activity was regained by structure-inspired amino acid exchanges. The results provide the structural rationale for the extended catalytic repertoire of ACADs and offer previously unknown biocatalytic options for the synthesis of cyclic 1,3-diene building blocks.


Assuntos
Acil-CoA Desidrogenases/metabolismo , Alcadienos/metabolismo , Acil-CoA Desidrogenases/química , Alcadienos/química , Biocatálise , Modelos Moleculares , Estrutura Molecular
11.
Arch Biochem Biophys ; 701: 108796, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609536

RESUMO

The discovery of a new energy-coupling mechanism termed flavin-based electron bifurcation (FBEB) in 2008 revealed a novel field of application for flavins in biology. The key component is the bifurcating flavin endowed with strongly inverted one-electron reduction potentials (FAD/FAD•- ≪ FAD•-/FADH-) that cooperatively transfers in its reduced state one low and one high-energy electron into different directions and thereby drives an endergonic with an exergonic reduction reaction. As energy splitting at the bifurcating flavin apparently implicates one-electron chemistry, the FBEB machinery has to incorporate prior to and behind the central bifurcating flavin 2e-to-1e and 1e-to-2e switches, frequently also flavins, for oxidizing variable medium-potential two-electron donating substrates and for reducing high-potential two-electron accepting substrates. The one-electron carriers ferredoxin or flavodoxin serve as low-potential (high-energy) electron acceptors, which power endergonic processes almost exclusively in obligate anaerobic microorganisms to increase the efficiency of their energy metabolism. In this review, we outline the global organization of FBEB enzymes, the functions of the flavins therein and the surrounding of the isoalloxazine rings by which their reduction potentials are specifically adjusted in a finely tuned energy landscape.


Assuntos
Elétrons , Metabolismo Energético/fisiologia , Flavina-Adenina Dinucleotídeo/metabolismo , Flavodoxina/metabolismo , Anaerobiose/fisiologia , Transporte de Elétrons/fisiologia
12.
Biochim Biophys Acta Bioenerg ; 1862(4): 148379, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33460586

RESUMO

In methanogenic archaea, the archetypical complex of heterodisulfide reductase (HdrABC) and hydrogenase (MvhAGD) couples the endergonic reduction of CO2 by H2 to the exergonic reduction of the CoB-S-S-CoM heterodisulfide by H2 via flavin-based electron bifurcation. Presently known enzymes containing HdrA(BC)-like components play key roles in methanogenesis, acetogenesis, respiratory sulfate reduction, lithotrophic reduced sulfur compound oxidation, aromatic compound degradation, fermentations, and probably many further processes. This functional diversity is achieved by a modular architecture of HdrA(BC) enzymes, where a big variety of electron input/output modules may be connected either directly or via adaptor modules to the HdrA(BC) components. Many, but not all HdrA(BC) complexes are proposed to catalyse a flavin-based electron bifurcation/confurcation. Despite the availability of HdrA(BC) crystal structures, fundamental questions of electron transfer and energy coupling processes remain. Here, we address the common properties and functional diversity of HdrA(BC) core modules integrated into electron-transfer machineries of outstanding complexity.


Assuntos
Proteínas Arqueais/metabolismo , Dióxido de Carbono/metabolismo , Dinitrocresóis/metabolismo , Hidrogênio/metabolismo , Methanobacteriaceae/enzimologia , Oxirredutases/metabolismo , Proteínas Arqueais/química , Dióxido de Carbono/química , Dinitrocresóis/química , Hidrogênio/química , Oxirredução , Oxirredutases/química
13.
FEBS J ; 288(5): 1664-1678, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32750208

RESUMO

Many bacteria and archaea employ a novel pathway of sulfur oxidation involving an enzyme complex that is related to the heterodisulfide reductase (Hdr or HdrABC) of methanogens. As a first step in the biochemical characterization of Hdr-like proteins from sulfur oxidizers (sHdr), we structurally analyzed the recombinant sHdrA protein from the Alphaproteobacterium Hyphomicrobium denitrificans at 1.4 Å resolution. The sHdrA core structure is similar to that of methanogenic HdrA (mHdrA) which binds the electron-bifurcating flavin adenine dinucleotide (FAD), the heart of the HdrABC-[NiFe]-hydrogenase catalyzed reaction. Each sHdrA homodimer carries two FADs and two [4Fe-4S] clusters being linked by electron conductivity. Redox titrations monitored by electron paramagnetic resonance and visible spectroscopy revealed a redox potential between -203 and -188 mV for the [4Fe-4S] center. The potentials for the FADH•/FADH- and FAD/FADH• pairs reside between -174 and -156 mV and between -81 and -19 mV, respectively. The resulting stable semiquinone FADH• species already detectable in the visible and electron paramagnetic resonance spectra of the as-isolated state of sHdrA is incompatible with basic principles of flavin-based electron bifurcation such that the sHdr complex does not apply this new mode of energy coupling. The inverted one-electron FAD redox potentials of sHdr and mHdr are clearly reflected in the different FAD-polypeptide interactions. According to this finding and the assumption that the sHdr complex forms an asymmetric HdrAA'B1C1B2C2 hexamer, we tentatively propose a mechanism that links protein-bound sulfane oxidation to sulfite on HdrB1 with NAD+ reduction via lipoamide disulfide reduction on HdrB2. The FAD of HdrA thereby serves as an electron storage unit. DATABASE: Structural data are available in PDB database under the accession number 6TJR.


Assuntos
Proteínas de Bactérias/química , Flavina-Adenina Dinucleotídeo/química , Hyphomicrobium/enzimologia , NAD/química , Oxirredutases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Elétrons , Escherichia coli/genética , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hyphomicrobium/genética , Modelos Moleculares , NAD/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Enxofre/química , Enxofre/metabolismo
14.
Annu Rev Microbiol ; 74: 713-733, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32692612

RESUMO

Most methanogenic archaea use the rudimentary hydrogenotrophic pathway-from CO2 and H2 to methane-as the terminal step of microbial biomass degradation in anoxic habitats. The barely exergonic process that just conserves sufficient energy for a modest lifestyle involves chemically challenging reactions catalyzed by complex enzyme machineries with unique metal-containing cofactors. The basic strategy of the methanogenic energy metabolism is to covalently bind C1 species to the C1 carriers methanofuran, tetrahydromethanopterin, and coenzyme M at different oxidation states. The four reduction reactions from CO2 to methane involve one molybdopterin-based two-electron reduction, two coenzyme F420-based hydride transfers, and one coenzyme F430-based radical process. For energy conservation, one ion-gradient-forming methyl transfer reaction is sufficient, albeit supported by a sophisticated energy-coupling process termed flavin-based electron bifurcation for driving the endergonic CO2 reduction and fixation. Here, we review the knowledge about the structure-based catalytic mechanism of each enzyme of hydrogenotrophic methanogenesis.


Assuntos
Archaea/metabolismo , Metabolismo Energético , Hidrogênio/metabolismo , Metano/metabolismo , Complexos Multienzimáticos/química , Archaea/química , Archaea/enzimologia , Dióxido de Carbono/metabolismo , Dinitrocresóis/metabolismo , Transporte de Elétrons , Complexos Multienzimáticos/metabolismo , Oxirredução
15.
Front Microbiol ; 11: 480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300335

RESUMO

Some anaerobic bacteria use biotin-dependent Na+-translocating decarboxylases (Bdc) of ß-keto acids or their thioester analogs as key enzymes in their energy metabolism. Glutaconyl-CoA decarboxylase (Gcd), a member of this protein family, drives the endergonic translocation of Na+ across the membrane with the exergonic decarboxylation of glutaconyl-CoA (ΔG 0' ≈-30 kJ/mol) to crotonyl-CoA. Here, we report on the molecular characterization of Gcd from Clostridium symbiosum based on native PAGE, size exclusion chromatography (SEC) and laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS). The obtained molecular mass of ca. 400 kDa fits to the DNA sequence-derived mass of 379 kDa with a subunit composition of 4 GcdA (65 kDa), 2 GcdB (35 kDa), GcdC1 (15 kDa), GcdC2 (14 kDa), and 2 GcdD (10 kDa). Low-resolution structural information was achieved from preliminary electron microscopic (EM) measurements, which resulted in a 3D reconstruction model based on negative-stained particles. The Gcd structure is built up of a membrane-spanning base primarily composed of the GcdB dimer and a solvent-exposed head with the GcdA tetramer as major component. Both globular parts are bridged by a linker presumably built up of segments of GcdC1, GcdC2 and the 2 GcdDs. The structure of the highly mobile Gcd complex represents a template for the global architecture of the Bdc family.

16.
J Mol Biol ; 432(7): 2042-2054, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32061937

RESUMO

NADP-dependent methylene-tetrahydromethanopterin (methylene-H4MPT) dehydrogenase (MtdA) catalyzes the reversible dehydrogenation of methylene-H4MPT to form methenyl-H4MPT+ by using NADP+ as a hydride acceptor. This hydride transfer reaction is involved in the oxidative metabolism from formaldehyde to CO2 in methylotrophic and methanotrophic bacteria. Here, we report on the crystal structures of the ternary MtdA-substrate complexes from Methylorubrum extorquens AM1 obtained in open and closed forms. Their conversion is accomplished by opening/closing the active site cleft via a 15° rotation of the NADP, relative to the pterin domain. The 1.08 Å structure of the closed and active enzyme-NADP-methylene-H4MPT complex allows a detailed geometric analysis of the bulky substrates and a precise prediction of the hydride trajectory. Upon domain closure, the bulky substrate rings become compressed resulting in a tilt of the imidazolidine group of methylene-H4MPT that optimizes the geometry for hydride transfer. An additional 1.5 Å structure of MtdA in complex with the nonreactive NADP+ and methenyl-H4MPT+ revealed an extremely short distance between nicotinamide-C4 and imidazoline-C14a of 2.5 Å, which demonstrates the strong pressure imposed. The pterin-imidazolidine-phenyl butterfly angle of methylene-H4MPT bound to MtdA is smaller than that in the enzyme-free state but is similar to that in H2- and F420-dependent methylene-H4MPT dehydrogenases. The concept of compression-driven hydride transfer including quantum mechanical hydrogen tunneling effects, which are established for flavin- and NADP-dependent enzymes, can be expanded to hydride-transferring H4MPT-dependent enzymes.


Assuntos
Hidrogênio/química , Hidrogênio/metabolismo , Methylobacterium extorquens/enzimologia , NADP/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
17.
Nat Rev Chem ; 4(4): 213-221, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37128042

RESUMO

Certain anaerobic microorganisms evolved a mechanism to use H2 as a reductant in their energy metabolisms. For these purposes, the microorganisms developed H2-activating enzymes, which are aspirational catalysts in a sustainable hydrogen economy. In the case of the hydrogenotrophic pathway performed by methanogenic archaea, 8e- are extracted from 4H2 and used as reducing equivalents to convert CO2 into CH4. Under standard cultivation conditions, these archaea express [NiFe]-hydrogenases, which are Ni-dependent and Fe-dependent enzymes and heterolytically cleave H2 into 2H+ and 2e-, the latter being supplied into the central metabolism. Under Ni-limiting conditions, F420-reducing [NiFe]-hydrogenases are downregulated and their functions are predominantly taken over by an upregulated [Fe]-hydrogenase. Unique in biology, this Fe-dependent hydrogenase cleaves H2 and directly transfers H- to an imidazolium-containing substrate. [Fe]-hydrogenase activates H2 at an Fe cofactor ligated by two CO molecules, an acyl group, a pyridinol N atom and a cysteine thiolate as the central constituent. This Fe centre has inspired chemists to not only design synthetic mimics to catalytically cleave H2 in solution but also for incorporation into apo-[Fe]-hydrogenase to give semi-synthetic proteins. This Perspective describes the enzymes involved in hydrogenotrophic methanogenesis, with a focus on those performing the reduction steps. Of these, we describe [Fe]-hydrogenases in detail and cover recent progress in their synthetic modelling.

18.
Proc Natl Acad Sci U S A ; 116(52): 26497-26504, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31811022

RESUMO

The molybdenum storage protein (MoSto) deposits large amounts of molybdenum as polyoxomolybdate clusters in a heterohexameric (αß)3 cage-like protein complex under ATP consumption. Here, we suggest a unique mechanism for the ATP-powered molybdate pumping process based on X-ray crystallography, cryoelectron microscopy, hydrogen-deuterium exchange mass spectrometry, and mutational studies of MoSto from Azotobacter vinelandii. First, we show that molybdate, ATP, and Mg2+ consecutively bind into the open ATP-binding groove of the ß-subunit, which thereafter becomes tightly locked by fixing the previously disordered N-terminal arm of the α-subunit over the ß-ATP. Next, we propose a nucleophilic attack of molybdate onto the γ-phosphate of ß-ATP, analogous to the similar reaction of the structurally related UMP kinase. The formed instable phosphoric-molybdic anhydride becomes immediately hydrolyzed and, according to the current data, the released and accelerated molybdate is pressed through the cage wall, presumably by turning aside the Metß149 side chain. A structural comparison between MoSto and UMP kinase provides valuable insight into how an enzyme is converted into a molecular machine during evolution. The postulated direct conversion of chemical energy into kinetic energy via an activating molybdate kinase and an exothermic pyrophosphatase reaction to overcome a proteinous barrier represents a novelty in ATP-fueled biochemistry, because normally, ATP hydrolysis initiates large-scale conformational changes to drive a distant process.

19.
Nat Commun ; 10(1): 2074, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061390

RESUMO

Hydride transfers play a crucial role in a multitude of biological redox reactions and are mediated by flavin, deazaflavin or nicotinamide adenine dinucleotide cofactors at standard redox potentials ranging from 0 to -340 mV. 2-Naphthoyl-CoA reductase, a key enzyme of oxygen-independent bacterial naphthalene degradation, uses a low-potential one-electron donor for the two-electron dearomatization of its substrate below the redox limit of known biological hydride transfer processes at E°' = -493 mV. Here we demonstrate by X-ray structural analyses, QM/MM computational studies, and multiple spectroscopy/activity based titrations that highly cooperative electron transfer (n = 3) from a low-potential one-electron (FAD) to a two-electron (FMN) transferring flavin cofactor is the key to overcome the resonance stabilized aromatic system by hydride transfer in a highly hydrophobic pocket. The results evidence how the protein environment inversely functionalizes two flavins to switch from low-potential one-electron to hydride transfer at the thermodynamic limit of flavin redox chemistry.


Assuntos
Proteínas de Bactérias/química , Coenzimas/química , Flavinas/química , Modelos Moleculares , Oxirredutases/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Simulação por Computador , Cristalografia por Raios X , Transporte de Elétrons , Flavinas/metabolismo , Naftalenos/química , Naftalenos/metabolismo , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise Espectral
20.
Angew Chem Int Ed Engl ; 58(11): 3506-3510, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30600878

RESUMO

[Fe]-hydrogenase (Hmd) catalyzes the reversible hydrogenation of methenyl-tetrahydromethanopterin (methenyl-H4 MPT+ ) with H2 . H4 MPT is a C1-carrier of methanogenic archaea. One bacterial genus, Desulfurobacterium, contains putative genes for the Hmd paralog, termed HmdII, and the HcgA-G proteins. The latter are required for the biosynthesis of the prosthetic group of Hmd, the iron-guanylylpyridinol (FeGP) cofactor. This finding is intriguing because Hmd and HmdII strictly use H4 MPT derivatives that are absent in most bacteria. We identified the presence of the FeGP cofactor in D. thermolithotrophum. The bacterial HmdII reconstituted with the FeGP cofactor catalyzed the hydrogenation of derivatives of tetrahydrofolate, the bacterial C1-carrier, albeit with low enzymatic activities. The crystal structures show how Hmd recognizes tetrahydrofolate derivatives. These findings have an impact on future biotechnology by identifying a bacterial Hmd paralog.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Tetra-Hidrofolatos/química , Biocatálise , Cristalização , Guanina/análogos & derivados , Guanina/biossíntese , Hidrogenação , Oxirredução , Ligação Proteica , Conformação Proteica , Piridinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...